Jump to content

Old Chronograph Hands (Removal)


Recommended Posts

An interesting thread in the chronometer club forum discussed the problem that is commonly found when removing an old chronograph second recording hand.
One member  mentions this:
"Yes. Older hands are extremely tight. I break one sometimes and if it came off clean, usually put it in the lathe and attach another tube"
I couldn't get a response on that forum so I am hoping I can gain some new knowledge here.

Is there a reference (book, journal article or video) that discusses this approach (in bold)?
Thank you,
Dean

Link to comment
Share on other sites

unfortunately they do come off (usually of the pipe)

I have a watchmaker that will not work on the old navitimers anymore as he has too much trouble with the hands. Another way is to undo the watch dial and pull it up using it to force off the hands (put something between the dial and hand first.

I do have a hand puller and lever and i do tend to use the levers but more room for error.

Others will chime in after a while but im always ready to have to repair the hands on the chronos!

Hope that helps (a bit)

Link to comment
Share on other sites

Hi Dean, I would recommend using levers as they give you more feel and control.

Do not use presto type hand removers, as there it is virtually impossible to get any feel or control of the process. When they pull, it happens very quickly with a sharp action that is far more likely to fold the second hand or rip it off the pipe. I know, I've done it!

Link to comment
Share on other sites



  • Recently Browsing

    • No registered users viewing this page.
  • Topics

  • Posts

    • this is something I've never quite understood about the some of the Swiss companies. In 1957 Omega was using 9010 for the keyless parts with epilam. there's been a slow migration towards using heavier lubrication's but still typically oils and epilam to keep them in place. When it seems like 9504 works so much better.  
    • OK, welcome in the world of alarm clocks... I guess the 4th wheel is dished because it is from another movement. If it was not dishet, then it would not mesh with the pinion of the escape wheel, am I right? The marks of wear on the 4th wheel pinion doesn't corespond to the 3th wheel table position, at list this is what i see on the picts. Calculating the rate is easy - there is a formula - BR = T2 x T3 x T4 x T5 x 2 /(P3 x P4 x P5) where T2 - T5 are the counts of the teeth of the wheels tables, and P3 - P5 are the counts of the pinion leaves. Vibrating the balance is easy - grasp for the hairspring where it should stay in the regulator with tweasers, let the balance hang on the hairspring while the downside staff tip rests on glass surface. Then make the balance oscillate and use timer to measure the time for let say 50 oscillations, or count the oscillations for let say 30 seconds. You must do the free oscillations test to check the balance staff tips and the cone cup bearings for wear. This kind of staffs wear and need resharpening to restore the normal function of the balance.
    • Glue a nut to the barrel lid, insert a bolt, pull, disolve the glue.  Maybe someone will have a better answer. 
    • The stress is the force (on the spring) x distance. The maximum stress is at the bottom, and decreases up the arm. That's why they always break at the bottom. I used a round file, then something like 2000 grit to finish. I gave the rest of the arm a quick polish - no need for a perfect finish. Just make sure there are no 'notches' left from cutting/filing. The notches act like the perforations in your toilet paper 🤣
    • It's probably a cardinal rule for watch repair to never get distracted while at the bench. Yesterday, after finishing a tricky mainspring winding/barrel insertion (I didn't have a winder and arbor that fit very well) I mentally shifted down a gear once that hurdle was passed. There were other things going on in the room as I put the barrel and cover into the barrel closer and pressed to get that satisfying snap. But when I took it out I realized I never placed the arbor.  When opening a barrel, we are relying on the arbor to transfer a concentrically-distributed force right where it is needed at the internal center of the lid. However, when that isn't present it's difficult to apply pressure or get leverage considering the recessed position of the lid, the small holes in the barrel and the presence of the mainspring coils. It was a beat-up practice movement so I didn't take a lot of time to think it over and I pushed it out using a short right-angle dental probe placed in from the bottom, but that did leave a bit of a scratch and crease in the thin lid. I had also thought about pulling it using a course-threaded screw with a minor thread diameter smaller than the lid hole and a major diameter larger, but that may have done some damage as well.  Thinking about how this might have been handled had it been a more valuable movement, is there a method using watchmaking or other tools that should extract the lid with the least damage? 
×
×
  • Create New...