Jump to content

Steel sizes for threading.


Seth

Recommended Posts

Hi there,Can anyone help me with what size I need to turn down a length of steel to put a number 13 thread from a screw plate on??I am rather confused on how this sizing works and would be most grateful if anyone can help me with any information on sizes of steel or brass before threading.Regards, Seth.

Link to comment
Share on other sites

face a length?

or turn down a diameter?

two different things. which one? for diameter, look up "thread pitch", "thread pitch major diameter" and "thread pitch minor diameter." or I just totally misunderstood your question.

Link to comment
Share on other sites

Hi there the screwplate I have is the one I enclose a photo of I got this in a set with all the taps from Cousins UK.The reason I want to find out the correct size of material is I have to replace a couple of case screws on an old pocket watch that have the heads broken in half and I have managed to get them out.I have tried threading a piece of 1.10 steel with a number 13 on the screwplate but the threadform  seems rather flat so before I go ahead and turn blank screws on my Lorch I want to find out the correct size of material I need to use.The origina broken case screws fit the number 13 screwplate fine and a number 13 tap screws into the watch plate perfectly.Regards Seth.

IMG_20200709_043928123.jpg

Link to comment
Share on other sites

To tap a hole for a screw to fit in it, then you use the 'thread pitch minor diam' for the drill diameter.  This will drill a hole the size of the bottom of the threads of the screw.  The tap will then take out the metal between this diam and the top of the thread in form of the thread.  A larger diameter drill will mean the thread depth is not full and so may strip easy if the screw is tightened too much or just be too loose a fit.  A smaller diameter drill will mean the tap is cutting into more metal and if care is not taken will jam the tap and snap it.  Normally most screw threads will have tables that show the tap drill diameter.  The smaller the screw size then the closer the tap needs to match the pitch minor diameter.

For making a screw, then you use the 'thread pitch major diam' for the blank rod/wire diameter.  The rest is similar to above, but too big diam will mean more metal removal and possible breaking of the blank in the die, and too small diam will result in a loose fit and possible stripping when tightened.

There are basically 2 forms of tap/die for each size.  One is tapered to allow easier starting of the tapping stage but will not tap all the way to the bottom of a hole or all the way to a shoulder on a screw.  The second will do this and is normally used after the tapered one.

The secret is to use some oil or grease on the tap/die when working steel and tougher metals.and ensure the tap/die is fully square to the work-piece. If you don't have tapping paste/oil then try and use one with EP (ie motor EP gear oil or Moebius EP 1300 etc,) even engine oil will do as these have additives that work to reduce friction at the cutting edge of the tap/die and only come into effect at those local high temps.  Brass, copper and aluminium can mainly be cut without a lube or just use paraffin oil.

Take it slow and just cut a very small bit at a time, backing off every now and then to clear out any swarf, don't force the tap/die.  When following a tapered tap with an end tap always clear out the swarf so you have a clean start with the next tap.

The pitch is simply the distance between adjacent thread peaks and the form/size based on several industry standards.

 

Edited by canthus
Link to comment
Share on other sites

That screwplate appears to be metric. So the sizes listed are the thread size, 20 is 2mm, 13 would be 1.3mm. So you would want to start with 1.3mm as your diameter. But- it might (probably) not cut the thread so much as cut and form the thread by displacing metal. I say that because it looks a little dubious in quality. So try a little smaller and see if you get a good thread form. You can turn a taper from say 1.15 to 1.3, and then thread that, and see where along the taper you get a full thread. Make a note of it for the next time you need to thread that size.

 

The old Martin screwplates had a screwy (haha) numbering system. There were two main designations from Martin, L and B; both seem to have the same thread diameters regarding their numbering, the difference is the pitch of the thread. Martin G plates were for left hand threads. Funnily enough, the "backward" numbering system for watch stems and crowns corresponds to the Martin sizing, I guess it was taken up at a time when Martin screwplates were the primary threading tool for watchmakers. 99% of the time I use industrially made metric taps and dies for threading, but sometimes for an old piece I will use a Martin plate. The threads are a little more rounded on their crests. I find that for a given size I need to turn a little undersize, as mentioned above. With new "real" metric stuff I turn to the nominal diameter.

 

 

StemTap-mm.jpg

  • Like 1
Link to comment
Share on other sites

1 minute ago, nickelsilver said:

That screwplate appears to be metric. So the sizes listed are the thread size, 20 is 2mm, 13 would be 1.3mm. So you would want to start with 1.3mm as your diameter. But- it might (probably) not cut the thread so much as cut and form the thread by displacing metal. I say that because it looks a little dubious in quality. So try a little smaller and see if you get a good thread form. You can turn a taper from say 1.15 to 1.3, and then thread that, and see where along the taper you get a full thread. Make a note of it for the next time you need to thread that size.

 

The old Martin screwplates had a screwy (haha) numbering system. There were two main designations from Martin, L and B; both seem to have the same thread diameters regarding their numbering, the difference is the pitch of the thread. Martin G plates were for left hand threads. Funnily enough, the "backward" numbering system for watch stems and crowns corresponds to the Martin sizing, I guess it was taken up at a time when Martin screwplates were the primary threading tool for watchmakers. 99% of the time I use industrially made metric taps and dies for threading, but sometimes for an old piece I will use a Martin plate. The threads are a little more rounded on their crests. I find that for a given size I need to turn a little undersize, as mentioned above. With new "real" metric stuff I turn to the nominal diameter.

 

 

StemTap-mm.jpg

Brilliant, many many thanks for your reply and help I will now have an afternoon tinkering with my lathes to see how it works.I have a Lorch lathe with lots of accessories and I have just bought myself a brand new Proxxon lathe as I'm retired and have lots of time (no pun meant) to tinker with old watches.Take care,keep safe and many thanks ,Regards,Seth.

Link to comment
Share on other sites

I hate saying this, but that looks like an Indian screw plate and if so, I would consider chucking it in the bin unless you just want to use it for mucking about. The taps they come with are horrendous - they just snap. I’m not sure what thread they are supposed to conform to, but I’d experiment using ISO/metric Swiss stem threads and inserting them into the plate to see if they bind. I do own one of these plate and tap sets. 
 

For sizes down to 1.0mm, the common SE Asian set made from HSS is excellent.

For individual sizes, WIRU Germany sell high quality taps and dies. I used mine the other week to make a shouldered 0.8mm screw for a JLC hack lever.

In terms of rod size for a particular thread, I usually experiment. The WIRU set gives a hole size for the taps which may give you a feeling about the difference in size required. In practice, I find the rod size is very close to the major diameter. I always taper the start of the rod (and cut off later). For tapping holes, a broach to adjust can be a good idea, not only because it gets the diameter just right, but because it creates a slight taper to start.

 

A3BB5DB8-1653-4908-ABE7-0D2EEE9AC6CF.jpeg

Edited by rodabod
Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Restore formatting

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.



  • Recently Browsing

    • No registered users viewing this page.
  • Topics

  • Posts

    • OK, welcome in the world of alarm clocks... I guess the 4th wheel is dished because it is from another movement. If it was not dishet, then it would not mesh with the pinion of the escape wheel, am I right? The marks of wear on the 4th wheel pinion doesn't corespond to the 3th wheel table position, at list this is what i see on the picts. Calculating the rate is easy - there is a formula - BR = T2 x T3 x T4 x T5 x 2 /(P3 x P4 x P5) where T2 - T5 are the counts of the teeth of the wheels tables, and P3 - P5 are the counts of the pinion leaves. Vibrating the balance is easy - grasp for the hairspring where it should stay in the regulator with tweasers, let the balance hang on the hairspring while the downside staff tip rests on glass surface. Then make the balance oscillate and use timer to measure the time for let say 50 oscillations, or count the oscillations for let say 30 seconds. You must do the free oscillations test to check the balance staff tips and the cone cup bearings for wear. This kind of staffs wear and need resharpening to restore the normal function of the balance.
    • Glue a nut to the barrel lid, insert a bolt, pull, disolve the glue.  Maybe someone will have a better answer. 
    • The stress is the force (on the spring) x distance. The maximum stress is at the bottom, and decreases up the arm. That's why they always break at the bottom. I used a round file, then something like 2000 grit to finish. I gave the rest of the arm a quick polish - no need for a perfect finish. Just make sure there are no 'notches' left from cutting/filing. The notches act like the perforations in your toilet paper 🤣
    • It's probably a cardinal rule for watch repair to never get distracted while at the bench. Yesterday, after finishing a tricky mainspring winding/barrel insertion (I didn't have a winder and arbor that fit very well) I mentally shifted down a gear once that hurdle was passed. There were other things going on in the room as I put the barrel and cover into the barrel closer and pressed to get that satisfying snap. But when I took it out I realized I never placed the arbor.  When opening a barrel, we are relying on the arbor to transfer a concentrically-distributed force right where it is needed at the internal center of the lid. However, when that isn't present it's difficult to apply pressure or get leverage considering the recessed position of the lid, the small holes in the barrel and the presence of the mainspring coils. It was a beat-up practice movement so I didn't take a lot of time to think it over and I pushed it out using a short right-angle dental probe placed in from the bottom, but that did leave a bit of a scratch and crease in the thin lid. I had also thought about pulling it using a course-threaded screw with a minor thread diameter smaller than the lid hole and a major diameter larger, but that may have done some damage as well.  Thinking about how this might have been handled had it been a more valuable movement, is there a method using watchmaking or other tools that should extract the lid with the least damage? 
    • 🤔 what happens if lubrication is placed directly on top of epilame ? Making a small groove so the lubrication doesn't spread across the component but what if when lubing a little overspills and sits on the epilame .
×
×
  • Create New...