Jump to content

NH35/4R35 Watch Build


Recommended Posts

Hello All,

I'm extremely new to watch building or anything beyond just wearing them. I want to build my own watch, but I would like to have a bigger dial/face (around 38-40mm). Is that possible with a movement like Seiko NH35/4R35 which has a diameter of around 28mm??

 

Thank you,

Sean

Link to comment
Share on other sites

Yes, it's possible but complicates things you will have to build more special parts like mov.t holder ring, or source a special case etc.

If one takes pride in how the watch is built beside how it looks that can take time money and effort.

 

Link to comment
Share on other sites

If it wasn't for your dial size requirement, the esslinger kit is a close match as it comes with a NH35: https://www.esslinger.com/make-my-own-watch-kit/

As the NH35 has a date wheel, one thing to be aware is that the date window will have to be at the same distance from the center regardless of what size dial you use. So a larger dial will have the date window further from the edge.

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Restore formatting

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.



  • Recently Browsing

    • No registered users viewing this page.
  • Topics

  • Posts

    • somewhere in the universe although as I'm answering this I remembered which discussion group. Somebody had a similar question loss basically expanded it to the watch would totally disintegrate in my think like 30 years. I'd have to go back and find the original discussion if I can the person seem to think that they hairspring would disintegrate like you describe and just metal on metal wearing out the entire watch. Except of course we all work on watches over 30 years and they obviously do not disintegrate. Plus somebody came along and explained why hairsprings do not have the same issues as mainsprings. Although hairsprings do end up with watchmakers insisting on bending and playing with them and torturing them etc. and that obviously is not good for the metal at all. one of the problems that you're having here it is what is the purpose of the test that started this discussion? Let me go and snip out the original image as you can see from images above this watch is horrible. Or is it? What is the purpose of the images up above in other words what exactly would use this test for? The real purpose this test is show the effect of amplitude on timekeeping. Or specifically you're looking for mechanical issues that are causing fluctuations in amplitude which unfortunately shows up  with timekeeping. or basically everything affects timekeeping but amplitude is affected by the mechanical characteristics of the watch from the mainspring to the balance wheel and unfortunately as it's a mechanical watch your always going to have power fluctuations. so how do we rule out unacceptable fluctuations versus the natural characteristic of the watch? Usually if you can find a repeating pattern you can narrow it down to the offending components for instance I'm attaching a PDF. on the second page of the PDF it talks about 21st-century equipment versus paper tape timing machines. Then they give an example of timing problems solely caused by a faulty component. although off you have a user's manual for a paper tape machine it does explain that you can find faulty components by looking at the variations on your paper tape seeing how often they repeat and do the same thing without the fancy software. Even though it was claimed that you couldn't do that in other words you couldn't find a pattern? One of the problems that comes up with modern LCD-based timing machines versus software is limited screen size. In other words it makes it very hard to look for patterns you'll see variations in numbers but it's hard to tell what's going on which is why the display above is really nice to see if there is a problem. for instance here's a paper printout from a witschi timing machine it does look distorted because I changed the speed at which the image would move across the screen. In other words I was trying to figure out a way to extend the screen to being much longer as I was looking for a pattern as you can see there doesn't appear to be a pattern at all so basically we end up with a watch that I cannot time at all they cannot really figure out what the problem is and I actually cannot find a pattern even begin the figure out where the problem might be. Plus I agreed to service this watch for free as I was going to use it for the purposes of a lecture. In other words it's a nice railroad grade pocket watch and I wanted to show before how horrible amplitude is and how wonderful it looks after serviced and after servicing it looked exactly the same still horrible. Then I used software for a clock timing machine and came up with this interesting image one a minor problems we have with time plots and  how they look is that they all do things a little bit differently. So this was occurring approximately every five minutes. Then we need another chart then I replaced something in the watch and we now get this one of the things that I was always bothered with was if I had put the hands on after servicing would the watch have Time? Because the pattern was repeating the watch would average that out may  it would have Time. Oh and what did I change somebody had swapped the mainspring barrel for something different were getting a binding between the mainspring in the center wheel pinion. so the problem you're having is what exactly is the problem? the purpose of the test image is to look for mechanical problems causing amplitude problems. Because it's a mechanical watch your always going to have variations so are the variations in this watch abnormal or normal for this watch? Once we eliminate the mechanical issues beyond it's a mechanical watch then you can work on timing issues. for timing issues I recommend going back to the normal display that were used to and make sure you have your averaging times set correctly. In other words while the graphical display is basically real time years of the numbers are averaged over time. Anywhere from 20 to 40 seconds depending upon whose specs you're looking at. So basically they will average out the problems were seeing on this time plot.   one of my amusements with students that go to the same school is that you have different instructors. So this gives you different experiences like what exactly is tight anyway as I don't remember any thing like this? Then did you know that Rolex at least in Geneva as I visited their service center replace all the screws in the watch every time they service the watch. then why did they do that because they use power screwdrivers and tighten those things down as tight as you can get them which has a problem. How many times can you tighten screw down really tight before the hints break off. So they replace the screws every single time. So personally I don't think they have to be so tight that you're in danger snapping head off that's too tight in my opinion. but the screws definitely shouldn't be falling out either which I've occasionally see and where people just don't tighten their screws tight enough.   Horologica Times -- May 2004 From the Workshop witschi time plot.pdf
    • I guess it is a possibility, but the train wheel bridge was pressed down all the way so I'm not so sure. Then again, the screws weren't tightened at all (imagine being screwed down all the way but using a piece of Rodico instead of a screwdriver). Anyway, the movement is now fully stripped so we'll have to see once I've assembled it again. BTW I found the post where @nickelsilver wrote about tightening screws: As he writes: "In school, if your screws aren't tight, like you think they might snap, you get your movement tossed in the sawdust box!" I'm really curious to know why it is so important to tighten the screws that hard. I usually stop when it feels like there is no chance the screw can start to unscrew itself. Also, screwing down that hard requires perfectly dressed and perfectly sized screwdrivers to avoid slippage and/or damaging the screw slot.
    • This place has them, cheaper than I saw on ebay and they appear to be a legitimate supplier: https://maddisonsofdurham.co.uk/watch-parts/capacitors/seiko-batteries-capacitors/seiko-capacitor-kinetic-30235mz-tc920s-5m42-5m22-5m23-battery-3023-5mz-3023-5my/?gad_source=1&gclid=CjwKCAjw7-SvBhB6EiwAwYdCASmviGb9G2ZGW3CtcUZBkNgglcgfPKoqnpOzrzruiPtm69f6DX7UGhoCKl4QAvD_BwE There is also a note at the bottom of the page about them being a newer type, with a slightly different part number.  
    • Are we ignoring  that another watch on tg showed similar rate fluctuation. Did I miss any conclusion made on this sigificant  point ?    Springs have high fatigue threshold,   meaning angle of  bend/distortion  has to be very sharp to cause material fatigue .  An evidence to this point is the bend we form at end of terminal curve or the bend at the collet,  are we causing fatigue there? definately not.       
    • Yes, I do have the Seitz pivot gauge which is worth a small fortune these days. Got mine for about £200 which I thought to be crazy expensive at the time, but I've now seen asking prices over twice that. And no, I do not have the scaled pin gauge, but it would be convenient. Let me know if you find them! Anyway, the Seitz pivot gauge is in my opinion not really necessary if you have the JKA Feintaster. It can measure even the very small pivots w/o making any dents. One will have to be a lot more careful when using the Bergeon micrometres.
×
×
  • Create New...